61 research outputs found

    Growth response of residual stands in western Montana and FVS model validation using remeasurement data

    Get PDF

    Sensitivity of inferred climate model skill to evaluation decisions: a case study using CMIP5 evapotranspiration

    Get PDF
    Confrontation of climate models with observationally-based reference datasets is widespread and integral to model development. These comparisons yield skill metrics quantifying the mismatch between simulated and reference values and also involve analyst choices, or meta-parameters, in structuring the analysis. Here, we systematically vary five such meta-parameters (reference dataset, spatial resolution, regridding approach, land mask, and time period) in evaluating evapotranspiration (ET) from eight CMIP5 models in a factorial design that yields 68 700 intercomparisons. The results show that while model–data comparisons can provide some feedback on overall model performance, model ranks are ambiguous and inferred model skill and rank are highly sensitive to the choice of meta-parameters for all models. This suggests that model skill and rank are best represented probabilistically rather than as scalar values. For this case study, the choice of reference dataset is found to have a dominant influence on inferred model skill, even larger than the choice of model itself. This is primarily due to large differences between reference datasets, indicating that further work in developing a community-accepted standard ET reference dataset is crucial in order to decrease ambiguity in model skill

    Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Huntzinger, D. N., Schaefer, K., Schwalm, C., Fisher, J. B., Hayes, D., Stofferahn, E., Carey, J., Michalak, A. M., Wei, Y., Jain, A. K., Kolus, H., Mao, J., Poulter, B., Shi, X., Tang, J., & Tian, H. Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems. Environmental Research Letters, 15(2), (2020): 025005, doi:10.1088/1748-9326/ab6784.Given the magnitude of soil carbon stocks in northern ecosystems, and the vulnerability of these stocks to climate warming, land surface models must accurately represent soil carbon dynamics in these regions. We evaluate soil carbon stocks and turnover rates, and the relationship between soil carbon loss with soil temperature and moisture, from an ensemble of eleven global land surface models. We focus on the region of NASA's Arctic-Boreal vulnerability experiment (ABoVE) in North America to inform data collection and model development efforts. Models exhibit an order of magnitude difference in estimates of current total soil carbon stocks, generally under- or overestimating the size of current soil carbon stocks by greater than 50 PgC. We find that a model's soil carbon stock at steady-state in 1901 is the prime driver of its soil carbon stock a hundred years later—overwhelming the effect of environmental forcing factors like climate. The greatest divergence between modeled and observed soil carbon stocks is in regions dominated by peat and permafrost soils, suggesting that models are failing to capture the frozen soil carbon dynamics of permafrost regions. Using a set of functional benchmarks to test the simulated relationship of soil respiration to both soil temperature and moisture, we find that although models capture the observed shape of the soil moisture response of respiration, almost half of the models examined show temperature sensitivities, or Q10 values, that are half of observed. Significantly, models that perform better against observational constraints of respiration or carbon stock size do not necessarily perform well in terms of their functional response to key climatic factors like changing temperature. This suggests that models may be arriving at the right result, but for the wrong reason. The results of this work can help to bridge the gap between data and models by both pointing to the need to constrain initial carbon pool sizes, as well as highlighting the importance of incorporating functional benchmarks into ongoing, mechanistic modeling activities such as those included in ABoVE.This work was supported by NASA'S Arctic Boreal Vulnerability Experiment (ABoVE; https://above.nasa.gov); NNN13D504T. Funding for the Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP; https://nacp.ornl.gov/MsTMIP.shtml) activity was provided through NASA ROSES Grant #NNX10AG01A. Data management support for preparing, documenting, and distributing model driver and output data was performed by the Modeling and Synthesis Thematic Data Center at Oak Ridge National Laboratory (MAST-DC; https://nacp.ornl.gov), with funding through NASA ROSES Grant #NNH10AN681. Finalized MsTMIP data products are archived at the ORNL DAAC (https://daac.ornl.gov). We also acknowledge the modeling groups that provided results to MsTMIP. The synthesis of site-level soil respiration, temperature, and moisture data reported in Carey et al 2016a, 2016b) was funded by the US Geological Survey (USGS) John Wesley Powell Center for Analysis and Synthesis Award G13AC00193. Additional support for that work was also provided by the USGS Land Carbon Program. JBF carried out the research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. California Institute of Technology. Government sponsorship acknowledged

    The importance of monsoon precipitation for foundation tree species across the semiarid Southwestern U.S.

    Get PDF
    Forest dynamics in arid and semiarid regions are sensitive to water availability, which is becoming increasingly scarce as global climate changes. The timing and magnitude of precipitation in the semiarid southwestern U.S. (“Southwest”) has changed since the 21st century began. The region is projected to become hotter and drier as the century proceeds, with implications for carbon storage, pest outbreaks, and wildfire resilience. Our goal was to quantify the importance of summer monsoon precipitation for forested ecosystems across this region. We developed an isotope mixing model in a Bayesian framework to characterize summer (monsoon) precipitation soil water recharge and water use by three foundation tree species (Populus tremuloides [aspen], Pinus edulis [piñon], and Juniperus osteosperma [Utah juniper]). In 2016, soil depths recharged by monsoon precipitation and tree reliance on monsoon moisture varied across the Southwest with clear differences between species. Monsoon precipitation recharged soil at piñon-juniper (PJ) and aspen sites to depths of at least 60 cm. All trees in the study relied primarily on intermediate to deep (10-60 cm) moisture both before and after the onset of the monsoon. Though trees continued to primarily rely on intermediate to deep moisture after the monsoon, all species increased reliance on shallow soil moisture to varying degrees. Aspens increased reliance on shallow soil moisture by 13% to 20%. Utah junipers and co-dominant ñons increased their reliance on shallow soil moisture by about 6% to 12%. Nonetheless, approximately half of the post-monsoon moisture in sampled piñon (38-58%) and juniper (47-53%) stems could be attributed to the monsoon. The monsoon contributed lower amounts to aspen stem water (24-45%) across the study area with the largest impacts at sites with recent precipitation. Therefore, monsoon precipitation is a key driver of growing season moisture that semiarid forests rely on across the Southwest. This monsoon reliance is of critical importance now more than ever as higher global temperatures lead to an increasingly unpredictable and weaker North American Monsoon

    YesWorkflow:A User-Oriented, Language-Independent Tool for Recovering Workflow Information from Scripts

    Get PDF
    Scientific workflow management systems offer features for composing complex computational pipelines from modular building blocks, for executing the resulting automated workflows, and for recording the provenance of data products resulting from workflow runs. Despite the advantages such features provide, many automated workflows continue to be implemented and executed outside of scientific workflow systems due to the convenience and familiarity of scripting languages (such as Perl, Python, R, and MATLAB), and to the high productivity many scientists experience when using these languages. YesWorkflow is a set of software tools that aim to provide such users of scripting languages with many of the benefits of scientific workflow systems. YesWorkflow requires neither the use of a workflow engine nor the overhead of adapting code to run effectively in such a system. Instead, YesWorkflow enables scientists to annotate existing scripts with special comments that reveal the computational modules and dataflows otherwise implicit in these scripts. YesWorkflow tools extract and analyze these comments, represent the scripts in terms of entities based on the typical scientific workflow model, and provide graphical renderings of this workflow-like view of the scripts. Future versions of YesWorkflow also will allow the prospective provenance of the data products of these scripts to be queried in ways similar to those available to users of scientific workflow systems

    The terrestrial biosphere model farm

    Get PDF
    Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system. We ran nine offline terrestrial biosphere models through the Terrestrial Biosphere Model Farm: CABLE, CENTURY, HyLand, ISAM, JULES, LPJ-GUESS, ORCHIDEE, SiB-3, and SiB-CASA. All models were wrapped in a software framework driven with common forcing data, spin-up, and run protocols specified by the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) for years 1901–2100. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) processing multiple models through a MIP is relatively straightforward, (b) MIP protocols are run consistently across models, which may reduce some model output variability, and (c) unique multimodel experiments can provide novel output for analysis. The challenges are: (a) technological demand is large, particularly for data and output storage and transfer; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. A merger with the open-source, cloud-based Predictive Ecosystem Analyzer (PEcAn) ecoinformatics system may be a path forward to overcoming these challenges

    2016 International Land Model Benchmarking (ILAMB) Workshop Report

    Get PDF
    As earth system models (ESMs) become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of terrestrial biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistryclimate feedbacks and ecosystem processes in these models are essential for reducing the acknowledged substantial uncertainties in 21st century climate change projections

    Assessing the relationship between microwave vegetation optical depth and gross primary production

    Get PDF
    At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing data. Microwave observations of vegetated areas are sensitive to different components of the vegetation layer than observations in the optical domain and may therefore provide complementary information on the vegetation state, which may be used in the estimation of Gross Primary Production (GPP). However, the relation between GPP and Vegetation Optical Depth (VOD), a biophysical quantity derived from microwave observations, is not yet known. This study aims to explore the relationship between VOD and GPP. VOD data were taken from different frequencies (L-, C-, and X-band) and from both active and passive microwave sensors, including the Advanced Scatterometer (ASCAT), the Soil Moisture Ocean Salinity (SMOS) mission, the Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) and a merged VOD data set from various passive microwave sensors. VOD data were compared against FLUXCOM GPP and Solar-Induced chlorophyll Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2). FLUXCOM GPP estimates are based on the upscaling of flux tower GPP observations using optical satellite data, while SIF observations present a measure of photosynthetic activity and are often used as a proxy for GPP. For relating VOD to GPP, three variables were analyzed: original VOD time series, temporal changes in VOD (ΔVOD), and positive changes in VOD (ΔVOD≄0). Results show widespread positive correlations between VOD and GPP with some negative correlations mainly occurring in dry and wet regions for active and passive VOD, respectively. Correlations between VOD and GPP were similar or higher than between VOD and SIF. When comparing the three variables for relating VOD to GPP, correlations with GPP were higher for the original VOD time series than for ΔVOD or ΔVOD≄0 in case of sparsely to moderately vegetated areas and evergreen forests, while the opposite was true for deciduous forests. Results suggest that original VOD time series should be used jointly with changes in VOD for the estimation of GPP across biomes, which may further benefit from combining active and passive VOD data
    • 

    corecore